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Abstract
The quantum states of a spinless charged particle on a hyperbolic plane in the
presence of a uniform magnetic field with a generalized quantization condition
are proved to be the bases of the irreducible Hilbert representation spaces of the
Lie algebra u(1, 1). The dynamical symmetry group U(1, 1) with the explicit
form of the Lie algebra generators is extracted. It is also shown that the energy
has an infinite-fold degeneracy in each of the representation spaces which are
allocated to the different values of the magnetic field strength. Based on the
simultaneous shift of two parameters, it is also noted that the quantum states
realize the representations of Lie algebra u(2) by shifting the magnetic field
strength.

PACS numbers: 02.30.Hq, 02.30.Gp, 12.39.St, 03.65.Fd

1. Introduction

The Landau levels problem appears to be related to rich physical and also mathematical
aspects, which is worthwhile studying in various possible configurations. The Landau levels
problem on a hyperbolic plane has been studied in various papers [1–4], and also been
extended to the noncommutative case [5, 6]. In this letter, in order to consider the Landau
levels problem on a hyperbolic plane we use simultaneous laddering relations with respect
to two different parameters of the associated Gegenbauer functions. It must be emphasized
that the laddering relations with respect to one parameter are equivalent to the sense of
shape invariance from the point of view of Gendenshtein [7]. Simultaneous laddering
relations with respect to two different parameters whose formulation was first performed
for the associated hypergeometric and Jacobi functions [8, 9], and then for the associated
Laguerre functions [10], provide rich algebraic structures for the special functions and their
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corresponding differential equations. See [11–16] for some previous works on these fields,
but with different emphasis. As an example in [11], using two different types of the laddering
relations realized simultaneously by the associated Gegenbauer functions, we studied some
aspects of quantum splitting corresponding to the motion of a free particle on a hyperbolic
plane.

In this letter we extract the solutions of Schrödinger equation corresponding to the motion
of a spinless charged particle on the hyperbolic plane in the presence of a uniform magnetic
field (i.e., Landau problem) for which a generalized quantization condition of the magnetic
field is established. It is shown that for each of these quantized values of the magnetic field
using the solutions we can construct the Hilbert representation spaces of the Lie algebra
u(1, 1) which describe the dynamical symmetry group U(1, 1) with infinite-fold degeneracy.
In fact, the representation of the Lie algebra u(1, 1) is realized when we deal with the
Landau levels corresponding to a given constant value of magnetic field strength. Also, using
the simultaneous laddering relations with respect to two different parameters we obtain the
representation of the Lie algebra u(2) by the quantum states. It is shown that the representation
is realized when the Landau levels corresponding to the different strengths of the uniform
magnetic fields are used.

2. Two different laddering relations for the associated Gegenbauer functions

As has been shown in [9], for a given real parameter λ > −1 and all integers n � 0 and
0 � m � n, the associated Gegenbauer functions P (λ)

n,m(x) with the Rodrigues representation

P (λ)
n,m(x) = (−1)m

2n�(λ + n + 1)

√
�(2λ + n + m + 1)

�(n − m + 1)

1

(1 − x2)λ+ m
2

dn−m

dxn−m
(1 − x2)λ+n (1)

satisfy an orthogonality relation with respect to the weight function (1 − x2)λ in the interval
−1 < x < +1 as∫ 1

−1
P (λ)

n,m(x)P
(λ)
n′,m(x)(1 − x2)λ dx = δnn′h2

n(λ), (2)

in which hn(λ) as the norm of the associated Gegenbauer functions P (λ)
n,m(x) is independent of

the parameter m:

hn(λ) = 2λ+ 1
2√

2λ + 2n + 1
. (3)

It is clear that the term 1 + (−1)n+n′
becomes zero when one of the integers n and n′ is even and

the other one is odd. In this case, δnn′ will be zero as well. In other cases, the term 1 + (−1)n+n′

takes the value 2 which, in turn, leads to the values 0 or 1 for δnn′ . Thus, considering the
relation P (λ)

n,m(−x) = (−1)n−mP (λ)
n,m(x) and using relation (2) we can conclude the following

orthogonality relation for the interval 0 < x < +1 with the same weight function (1 − x2)λ:∫ 1

0
P (λ)

n,m(x)P
(λ)
n′,m(x)(1 − x2)λ dx = δnn′

h2
n(λ)

2
. (4)

The laddering relations with respect to n for a given m, and also with respect to m for a given
n, are represented by the associated Gegenbauer functions P (λ)

n,m(x) as [9]

A+(n; x)P
(λ)
n−1,m(x) =

√
(n − m)(2λ + n + m)P (λ)

n,m(x) (5a)

A−(n; x)P (λ)
n,m(x) =

√
(n − m)(2λ + n + m)P

(λ)
n−1,m(x) (5b)
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and

A+(m; x)P
(λ)
n,m−1(x) =

√
(n − m + 1)(2λ + n + m)P (λ)

n,m(x) (6a)

A−(m; x)P (λ)
n,m(x) =

√
(n − m + 1)(2λ + n + m)P

(λ)
n,m−1(x), (6b)

respectively, in which the explicit forms of differential operators A+(n; x) and A−(n; x) as
well as A+(m; x) and A−(m; x) are given by

A+(n; x) = (1 − x2)
d

dx
− (2λ + n)x (7a)

A−(n; x) = −(1 − x2)
d

dx
− nx (7b)

and

A+(m; x) =
√

1 − x2
d

dx
+

(m − 1)x√
1 − x2

(8a)

A−(m; x) = −
√

1 − x2
d

dx
+

(2λ + m)x√
1 − x2

. (8b)

In fact the choice of (1) for the normalization coefficients in the Rodrigues formula has allowed
us to separate the associated differential equation as two different types of laddering relations
with respect to the indices n and m. Now we can obtain one pair of the raising and lowering
relations in order to provide the tools necessary for describing the Landau levels on hyperbolic
plane with the dynamical symmetry group U(1, 1). This will be another one of the results of
the idea of simultaneous shape invariance with respect to two different parameters n and m.
For this purpose, firstly, we define one pair of laddering operators as

A±,±(n,m; x) := ± [A±(m; x),A±(n; x)]

= ∓x
√

1 − x2
d

dx
+

(λ ± λ + n)x2 − 2λ − n − m + 1
2 ± 1

2√
1 − x2

, (9)

where the explicit forms of them are calculated by using equations (7a), (7b), (8a) and (8b).
Applying equations (5a), (5b), (6a) and (6b), one may derive the simultaneous laddering
relations with respect to two parameters n and m as follows:

A+,+(n,m; x)P
(λ)
n−1,m−1(x) =

√
(2λ + n + m − 1)(2λ + n + m)P (λ)

n,m(x) (10a)

A−,−(n,m; x)P (λ)
n,m(x) =

√
(2λ + n + m − 1)(2λ + n + m)P

(λ)
n−1,m−1(x). (10b)

The operators A+,+(n,m; x) and A−,−(n,m; x) simultaneously increase and decrease both of
the indices, respectively.

3. The dynamical symmetry group U (1, 1) and infinite-fold degeneracy for
Landau levels

Now by using a new variable r in the interval 0 < r < +∞, given by the following relation:

x = 1

cosh r
2

, (11)
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and also the free variable φ in the interval 0 � φ < 2π , together with defining new parameter
d as d := n − m + 1 with d = 1, 2, 3, . . . , we can construct the irreducible representations for
the Lie algebra u(1, 1) so that its generators and the Casimir operator describe the dynamical
symmetry group U(1, 1) for moving a charged particle on the hyperbolic plane in the presence
of a uniform magnetic field. In order to realize this goal, for given parameters λ and d we
define the infinite-dimensional Hilbert space H(λ,d) := span

{∣∣ λ

d,m

〉}
m�0 which is generated by

the following bases:

∣∣ λ
d,m

〉
:= eimφ

√
2π

P
(λ)
m+d−1,m

(
1

cosh r
2

)
hm+d−1(λ)

λ > −1, m = 0, 1, 2, . . . and d = 1, 2, 3, . . . .

(12)

Using equation (4), it becomes obvious that not only the bases of the Hilbert space H(λ,d) with
respect to the following inner product constitute an orthonormal set for different ms but also
the bases of the Hilbert spaces H(λ,d) with the different ds are orthogonal to each other with
respect to the same inner product:

〈 λ

d,m

∣∣ λ

d ′,m′
〉 =

∫ 2π

φ=0

∫ ∞

r=0


 eimφ

√
2π

P
(λ)
m+d−1,m

(
1

cosh r
2

)
hm+d−1(λ)




∗

×

 eim′φ

√
2π

P
(λ)
m′+d ′−1,m′

(
1

cosh r
2

)
hm′+d ′−1(λ)


 sinh2λ+1 r

2

cosh2λ+2 r
2

dr dφ

= δdd ′δmm′ . (13)

The following irreducible representation for the Lie algebra u(1, 1) in the Hilbert space H(λ,d)

can be immediately found using the representations (10a) and (10b) of the simultaneous
laddering relations with respect to the different parameters n and m:

L(λ,d)
+

∣∣ λ

d,m−1

〉 = hm+d−1(λ)

2hm+d−2(λ)

√
(2λ + 2m + d − 2)(2λ + 2m + d − 1)

∣∣ λ

d,m

〉
(14a)

L
(λ,d)
−

∣∣ λ

d,m

〉 = hm+d−2(λ)

2hm+d−1(λ)

√
(2λ + 2m + d − 2)(2λ + 2m + d − 1)

∣∣ λ

d,m−1

〉
(14b)

L3

∣∣ λ

d,m

〉 = m
∣∣ λ

d,m

〉
(14c)

I
∣∣ λ

d,m

〉 = ∣∣ λ

d,m

〉
, (14d)

in which the explicit forms of the raising and the lowering operators corresponding to the
parameter m, the Cartan subalgebra generator and the centre of algebra are, respectively,

L(λ,d)
+ = eiφ

(
∂

∂r
+ i coth r

∂

∂φ
−

(
λ +

d

2

)
tanh

r

2

)
(15a)

L
(λ,d)
− = e−iφ

(
− ∂

∂r
+ i coth r

∂

∂φ
−

(
λ +

d

2
− 1

2

)
tanh

r

2
− 2λ

sinh r

)
(15b)

L3 = −i
∂

∂φ
(15c)

I = 1. (15d)
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Using the explicit form of the operators, one can easily conclude that the operators{
L

(λ,d)
+ , L

(λ,d)
+ , L3, I

}
satisfy the commutation relations of the Lie algebra u(1, 1) as follows:

[
L(λ,d)

+ , L
(λ,d)
−

] = −2L3 − (
2λ + d − 1

2

)
I (16a)[

L3, L
(λ,d)
±

] = ±L
(λ,d)
± (16b)[

L(λ,d)
+ , I

] = [
L

(λ,d)
− , I

] = [L3, I ] = 0. (16c)

These commutation relations can also be verified by considering the representation of the Lie
algebra u(1, 1) in the Hilbert space H(λ,d) as relations (14a)–(14d). This Lie algebra u(1, 1)

can decompose into the direct sum su(1, 1) ⊕ u(1) if λ is chosen as λ = − d
2 + 1

4 .
The Casimir operator of the Lie algebra u(1, 1) is given by

H(λ,d) = 1

2

[
L(λ,d)

+ L
(λ,d)
− − L2

3 −
(

2λ + d − 3

2

)
L3 +

1

2

(
λ +

d

2
− 1

)]

= 1

2

[
− ∂2

∂r2
− 1

sinh2 r

∂2

∂φ2
−

(
2λ + 1

sinh r
+

tanh r
2

2

)
∂

∂r
+ i

(
−2λ

sinh2 r
+

2d − 1

4 cosh2 r
2

)
∂

∂φ

+
1

4
(2λ + d)

(
2λ − 1 + (d − 1) tanh2 r

2

)]
. (17)

It is possible to interpret the Casimir operator as a Hamiltonian operator corresponding to
a charged particle on the hyperbolic plane described by the metric gij , in the presence of
magnetic and electric fields with gauge connection Ai and electric potential V . In order to
provide the mentioned interpretation it is sufficient to equalize the Casimir operator H(λ,d)

with the general form of Laplace–Beltrami operator L = − 1
2DA

j DAj + V , in which covariant
derivative DA

j is expressed in terms of gauge and Levi-Civita connections as DA
j = ∇j − iAj

[17]. Here, the indices i and j take the values r and φ. Comparing the coefficients of the
second order partial derivatives of the Casimir and Laplacian operators, the metric tensor
corresponding to the hyperbolic plane can be calculated as

gij =
(

1 0
0 sinh2 r

)
. (18)

The non-vanishing components of Christoffel symbols and Ricci tensor of metric (18), as well
as the Ricci scalar curvature, are derived as

�r
φφ = − 1

2 sinh 2r, �
φ
rφ = coth r, Rrr = −1,

Rφφ = −sinh2 r, R = gijRij = −2,
(19)

which describe a two-dimensional hyperbolic plane. The gauge potential Ai and the electric
potential V , and consequently, their corresponding the constant magnetic and zero electric
fields can be determined by comparing the coefficients of the first-order partial derivatives and
the terms without derivative as

Ar = 1
4i

cosh r−4λ−1
sinh r

Aφ = −λ + 1
2

(
d − 1

2

)
(cosh r − 1)

V = 1
2

(
λ2 + λd − λ − d

4 − 1
4

)

 �⇒

{
B = ∂Aφ

∂r
dr ∧ dφ = 1

2

(
d − 1

2

)
sinh r dr ∧ dφ

E = − ∂V
∂r

er = 0.

(20)
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Since sinh r dr ∧ dφ is the volume form of hyperbolic plane, we thus deal with a uniform
magnetic field on it. Now, it is easy to show that the Casimir operator H(λ,d) satisfies the
following eigenvalue equation on the Hilbert space H(λ,d):

H(λ,d)
∣∣ λ
d,m

〉 = 1

2

(
λ +

d

2

)(
λ +

d

2
− 1

) ∣∣ λ
d,m

〉
m = 0, 1, 2, . . . . (21)

Therefore for given λ and d, the kets
∣∣ λ
d,m

〉
as Landau levels describe the motion of a

spinless charged particle on the hyperbolic plane in the presence of a uniform magnetic
field with the dynamical symmetry group U(1, 1) and the infinite-fold degeneracy in the
Hilbert representation space H(λ,d) via the discrete quantum number m. While the strength of
magnetic field is independent of the parameter λ, it is quantized in terms of d as odd multiples
2d − 1. This condition is equivalent to a generalized quantization condition for the uniform
magnetic field. Relations (20) show that if we cancel the term 1

2 (λ2 + λd − λ) of both sides
of the eigenvalue equation (21), then we obtain an additional degeneracy for spectrum via the
continuous parameter λ on all Hilbert spaces H(λ,d) with a given strength of the magnetic field
[5, 6]. Furthermore, for a fixed λ, the Hilbert spaces H(λ,d) with the different ds are allocated
to the uniform magnetic fields with different strengths.

4. u(2) maps between the Landau levels Hilbert spaces with different
strengths of the magnetic field

Now we are going to realize the representation of the compact Lie algebra u(2) via simultaneous
shift of both indices m and d. This realization is done by shifting between the orthogonal
Hilbert spaces H(λ,d) with the different ds. Using the raising and lowering relations (6a) and
(6b), it can be easily shown that the quantum states

∣∣ λ
d,m

〉
also satisfy the following relations:

J
(λ)
−+

∣∣ λ
d+1,m−1

〉 =
√

d(2λ + 2m + d − 1)
∣∣ λ
d,m

〉
(22a)

J
(λ)
+−

∣∣ λ
d,m

〉 =
√

d(2λ + 2m + d − 1)
∣∣ λ
d+1,m−1

〉
(22b)

J3

∣∣ λ
d,m

〉 = m
∣∣ λ
d,m

〉
(22c)

I
∣∣ λ
d,m

〉 = ∣∣ λ
d,m

〉
, (22d)

where the explicit forms of the generators are, respectively,

J
(λ)
−+ = eiφ

(
−2 cosh

r

2

∂

∂r
− i

sinh r
2

∂

∂φ

)
(23a)

J
(λ)
+− = e−iφ

(
2 cosh

r

2

∂

∂r
− i

sinh r
2

∂

∂φ
+

2λ

sinh r
2

)
(23b)

J3 = −i
∂

∂φ
(23c)

I = 1. (23d)

One can easily conclude that the operators
{
J

(λ)
−+ , J

(λ)
+− , J3, I

}
satisfy the commutation relations

of Lie algebras u(2) as follows:[
J

(λ)
−+ , J

(λ)
+−

] = 2J3 + 2λI (24a)[
J3, J

(λ)
∓±

] = ±J
(λ)
∓± (24b)[

J
(λ)
−+ , I

] = [
J

(λ)
+− , I

] = [J3, I ] = 0. (24c)
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In the special case that λ = 0, the associated Gegenbauer functions P
(λ)
m+d−1,m

(
1

cosh r
2

)
are

converted to the Legendre functions and the Lie algebra u(2) decomposes into the direct sum
su(2) ⊕ u(1). It is also clear that the representation (22) for Lie algebra u(2) is finite, since
the indices d and m cannot simultaneously take values smaller than 1 and 0, respectively. In
fact, for every given d + m, relations (22) present a (d + m)-dimensional representation of
the Lie algebra u(2). According to equations (22a) and (22b), the operator J

(λ)
−+ maps the

Hilbert space H(λ,d+1) into H(λ,d), while the operator J
(λ)
+− does the opposite. This means that

it is possible to go from Landau levels of a given field strength to the other one just using the
generators of Lie algebra u(2).

Equation (22a) shows that the lowest states
∣∣ λ
1,m

〉
of u(2) belonging to the Hilbert space

H(λ,1) satisfies a first-order differential equation as J
(λ)
−+

∣∣ λ
1,m

〉 = 0 with the following solution:

∣∣ λ
1,m

〉 = (−1)m
√

�(2λ + 2m + 2)

2λ+m+ 1
2 �(λ + m + 1)

eimφ

√
2π

tanhm r

2
m = 0, 1, 2, . . . . (25)

So, with the help of (22b), one can obtain an arbitrary Landau level of the space H(λ,d) in the
framework of the algebraic manner as

∣∣ λ
d,m

〉 =
√

�(2λ + 2m + d)

�(d)�(2λ + 2m + 2d − 1)

(
J

(λ)
+−

)d−1 ∣∣ λ
1,m+d−1

〉
d = 1, 2, 3, . . . ,

m = 0, 1, 2, . . . . (26)

Equation (26) implies that all bases of Hilbert spaces H(λ,d) are generated by successive action
of the operator J

(λ)
+− on the lowest states

∣∣ λ
1,m

〉
. Therefore, we have obtained an additional

symmetry, the so-called u(2) on the Landau levels, so that it is realized by the quantum states
with different strengths.
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